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Abstract: The appearance of radix-2
2
 was a milestone in the design of pipelined FFT hardware architectures.   

However, radix-2
2
 was only proposed for single-path delay feedback (SDF) architectures. In this paper we 

presents the radix-2
2
 DIF with combined single-path delay commutator-feedback (SDC-SDF) pipelined fast 

Fourier transform architecture. In feed forward architectures FFT radix can be used for any number of parallel 

samples which is a power of two. Furthermore, both decimation in frequency (DIF) and decimation in time 

(DIT) decompositions can be used. In this paper, an efficient VLSI architecture of a pipeline fast Fourier 

transform (FFT) processor with 100% hardware utilization and 50% normal output order sequence is 

presented. The proposed pipelined fast Fourier transform architecture, which includes log2 N − 1 SDC stages, 

and 1 SDF stage. The low complexity is achieved by sharing the common arithmetic for 100% resource 

hardware resource utilization in the time-multiplexed approach, including both adders and multipliers. Finally 

complexity reduction is proved and functionality is verified and compared with existing methods. 

. 

I. Introduction 
The Discrete Fourier transform (DFT) is obtained by decomposing a sequence of values into 

components of different frequencies. The Fast Fourier transforms (FFTs) are the efficient algorithms to compute 

the DFT [1]. The FFT algorithms are based on the principle of decomposing the computation of DFT into 

sequences of smaller DFTs. This operation is useful in many fields but computing it directly from the definition 

is often too slow to be practical. The FFT is used in various applications where the frequency-domain 

representation of a signal has to be analyzed. In the communications area, the FFT has gained attention because 

of its use in orthogonal frequency division multiplexing (OFDM) systems [1]. For OFDM receivers, a FFT 

processing block is required. Several communication systems require medium resolution (9–12 bits) analog-to-

digital converters with bandwidths in the tens of MHz range. The applications that use the FFT impose 

challenging specifications for its processing, such as small silicon area, high throughput, short processing time 

and reduced power consumption. For these applications, pipeline FFT architectures are accurate. FFT has 

applications in mixed radix system, one of the popular numerical systems in which FFT numerical base or radix 

varies from one position to another position. FFT is the most popular digital spectrum analysis technique. The 

DFT is one of the fundamental operations in digital signal processing. The original computation of DFT with 

sample input requires complex multiplications. Cooley and Tukey first introduced the concept of FFT to 

demonstrate a significant computational reduction from to by making efficient use of symmetry and periodicity 

properties of the twiddle factors. The related algorithms for the computation of the DFT are generally known as 

the FFTs. DFT and FFT are very popular signal processing tools. An FFT computes the    DFT and produces 

exactly the same result as evaluating the DFT definition. Computing the DFT of N points in the naive way using 

the definition takes O(N2) arithmetical operations while a FFT can compute the same DFT in only O(N log N) 

operations. FFT module can be designed for the receiver and can be used for the transmitter IFFT with external 

conjugation either in hardware or software. The discrete Hartley transform (DHT) is widely used in signal and 

image processing applications. The advantage of the DHT over the DFT is that it can be used to avoid complex 

operations when the input sequence is real. The forward and inverse DHTs [3] differ from each other in their 

form only in the scaling factor. The decimation in-time (DIT) and the decimation in- frequency (DIF) algorithms 

[4] are the typical forms of the FFT algorithm. 

Let us consider a ring R with primitive nth root of unity ω where n =pk. Suppose that we wish to 

evaluate a polynomial f ∈ R[x] of degree less than n at n points and the particular set of points used for the 

multipoint evaluation is not important. In this case, the number of operations needed to compute the multipoint 

evaluation can be significantly reduced if f is evaluated at each of the powers of ω, i.e. {f(1), f(ω), f(ω2), f(ω3), . 

. . , f(ωn−1)}. Each of the n points used for this computation is a root of xn − 1. In [1], Gao calls this operation 

the “multiplicative FFT” to distinguish it from the operation that will be discussed in Chapter 3. For the 

remainder of this chapter, it is to be understood that “FFT” will refer to this multiplicative FFT. Nearly every 
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presentation and shows how these computations can be completed using a “divide-and-conquer” approach 

involving the factorization of this matrix. In this chapter, we will instead view the FFT as a special case of the 

multipoint evaluation algorithm discussed. In this chapter, we will first present two types of algorithms that can 

compute an FFT when p = 2 using algebraic descriptions of these algorithms found in [2]. Next, we will give 

algorithms with lower operation counts in the case where multiplication by certain roots of unity can be 

computed more efficiently than others. Finally, we will present multiplicative FFT algorithms that can be used 

when p = 3. With this background, the reader can develop FFT algorithms for other values of p if desired.  

 

II. Related Work 
 A novel pipelined fast Fourier transform (FFT) architecture which is capable of producing the output 

sequence in normal order. A single-path delay commutator processing element (SDC PE) [5] has been proposed 

for the first time. It save a complex adder compared with the typical radix-2 butterfly unit. The new pipelined 

architecture can be built using the proposed processing element. The proposed architecture can lead to 100% 

hardware utilization and 50% reduction in the overall number of adders required in the conventional pipelined 

FFT design. In order to produce the output sequence in normal order, we also present a bit reverser, which can 

achieve a 50% reduction in memory stage. Multipath-path delay commutator [3] structures are utilized to 

improve the throughput rate of radix-2 and radix-4 FFT [2] computation by a factor of 2 to 4. Latency can be 

reduced by a factor of 2 to 3.  Compared with previous radix-2 and radix-4 FFT structures, the proposed high- 

throughput FFT with doubled throughput rate requires similar or even less hardware cost. Although split radix 

FFT design is more hardware efficient, the regular structure of proposed FFT structure are attractive for high 

throughput FFT design. An efficient VLSI architecture of a pipeline fast Fourier transform (FFT) processor 

capable of producing the normal output order sequence is presented. A new FFT design based on the decimated 

dual-path delay feed-forward data commutator [2] unit by splitting the input stream into two half-word streams 

is first proposed. The resulting architecture can be achieve full hardware efficiency such that the required 

number of adders can be reduced by half. Next, in order to generate the normal output order sequence, this paper 

also presents a sequence conversion method by integrating the conversion function into the last data commutator 

module.         

 

III. Low-Power Fft Design Technique 
a) Radix–2 DIT FFT algorithm 

With the introduction of field programmable gate arrays (FPGAs), it is feasible to provide hardware for 

application specific computation design. The changes in designs in FPGA’s 5] can be accomplished within a 

few hours, and thus result in significant savings in cost and design cycle. FPGAs offer speed comparable to 

dedicated and fixed hardware systems for parallel algorithm. The radix-2 decimation in time is applied 

recursively to the two lengths   N/2 DFT’s to save computation time. The full radix-2 decimation-in time of 

length 8-signals is illustrated in fig-1, using the simplified butterflies. It involves M = log2N stages, each with 

N/2 butterflies per stage. Each butterfly requires 1 complex multiplier [3] and two adder per butterfly. The total 

cost of the algorithm is thus computational cost of radix-2 DIT FFT .- N/2log2N complex multipliers, Nlog2N 

complex adders. 

 

 
Fig 1 Butterfly for radix-2 DIT FFT 

 

 
 

Fig 2 Block diagram of Radix-2   FFT 
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b) Radix -2
k
 algorithm 

The N-point DFT is formulated as  
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frequency index. The radix 2
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algorithm can be derived by integrating twiddle factor decomposition through a 

divide and conquer approach. 

 

c) Radix -2
2
 algorithm 

Consider the first two steps of decomposition in radix-2 DIF FFT together. Applying a 3-dimensional linear 

index map as follows 
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where the first butterfly structure has the form of 
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 Decomposing the composite twiddle factor,it can be expressed in Eq.(5). 
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Substituting the Eq.(5) into Eq.(3) and expanding the summation with regard to index
2n ,we have a set of 4 

DFT of length 
4

N . 
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After these two columns, full multiplications are used to apply the decomposed twiddle factor 
)2( 213 kkn

NW


in Eq.(6).Applying this cascade decomposition recursively to the remaining  DFTs  of  length   

4N  
in  Eq.(6), the complete radix -2

2
 FFT algorithm is obtained. Equation (7) represents the first two columns 

of butterflies with only trivial multiplication of (-j) which can be implemented using only real-imaginary 
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swapping and sign inversion.The radix-2
2
 algorithm is characterized according to the merit that it has the same 

multiplicative complexity and as the radix-4 algorithm, but still retains simple structures of the radix-2 butterfly. 

d) Single-path delay commuator processing The SDC PE, consists of a data commutator, a real add/sub 

unit, and an optimum complex multiplier unit In order to minimize the arithmetic resource of the SDC PE, the 

most significant factor is to maximize the arithmetic resource utilization via reordering the data sequences of the 

above three units. In the stage t, the data commutator shuffles its input data (Node−A) to generate a new data 

sequence (Node−B), whose index difference is N/2t, where t is the index of stage. The new data sequence 

(Node−B) is critical to the real add/sub unit, where one real adder and one real subtracted can both operate on 

two elements for each input data. The sum and difference results (Node−C) overlap the places of the two input 

elements. Therefore, it preserves the data sequence, requires only one real adder and one real subtracted. For the 

optimum complex multiplier unit[5], its output data sequence (Node−E) should be the same as its input data 

sequence (Node−C). If so, its output sequence (Node−E), which is also the output sequence of the SDC stage t, 

can become the direct input data sequence (Node−A) of the SDC stage t+1. 

 

 
 

Fig 3 Block diagram of the proposed FFT architecture. 

 

As it contains 2 multiplexers (M1 and M2), 1.5-word memory (G1, G2, andG3), 2 Real Multipliers and 

1 Real Adder. The signal s controls the behavior of two multiplexers (M1 and M2): through or swap. The signal 

s also controls the behavior of the Real Adder, which supports both addition and subtraction operations. For the 

input couple (0_r,8 _r) and (0 _i,8 _i) at the Node−C in Table II the sum part data 0 _r and 0_i will directly pass 

to the delay memory G1 to generate 0_r* and 0_i* with one cycle delay in consecutive two cycles, while the 

difference part 8_r and 8_i will directly enter the Real Multipliers (Node−D) to generate (c × 8_r d × 8_r) and ( 

c × 8_i, d × 8_i) before reordering. The reordering process is performed as follows.  

1) In the first cycle, when 8_r comes, the signal s (s =1) selects “through”; that is, the up (down) input of the 

multiplexer (M1 or M2) connects to the up (down) output. Then, the G2 (or G3) would be d × 8_r (or c × 8_r) in 

the second cycle. 

 2) In the second cycle, when 8_i comes, the signal s (s = 0) selects “swap”; that is, the up (down) input of the 

multiplexer (M1 or M2) connects to the down (up) output. Then, the G2 (or G3) would be c ×8_i (or d × 8_r) in 

the third cycle. The s will make the Real Adder perform subtraction operation and then c× 8_ r_d × 8_i (8_r*) 

would appear at the Node−E. 

3) In the third cycle, the signal s (s = 1) selects “through” for M1 and M2, and chooses addition operation for 

Real Adder. Then, d × 8_r+c × 8_i (8_i*) would appear at the Node−E. 
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Iv. Software Implementation Results 
 

a) 2 multiplier functional verification in Modelsim 

 
 

b) Performance of area 

 
 

c) Performance of speed 
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d) Power analyzer 

 
 

 

IV. TABLE 

 

Comparison table for Multiplier, Area, Power, Speed. 

Table 5.1 

 
 

IV. Conclusion 
In  this  paper, a  radix -2

2  
algorithm  and  16  point  combined  SDC-SDF  pipelined FFT architecture 

radix -2
2 

FFT architecture have been proposed for OFDM-based WPAN applications. The number of complex   

multipliers and twiddle factor LUTs are reduced using pre-shuffling units in the radix -2
2 

algorithm. The 

proposed radix -2
2 

FFT processor is extended into accurate FFT architecture for the 16-point SDC-SDF FFT 

processors. The proposed architecture has potential applications in high-rate OFDM-based WPAN systems. 
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